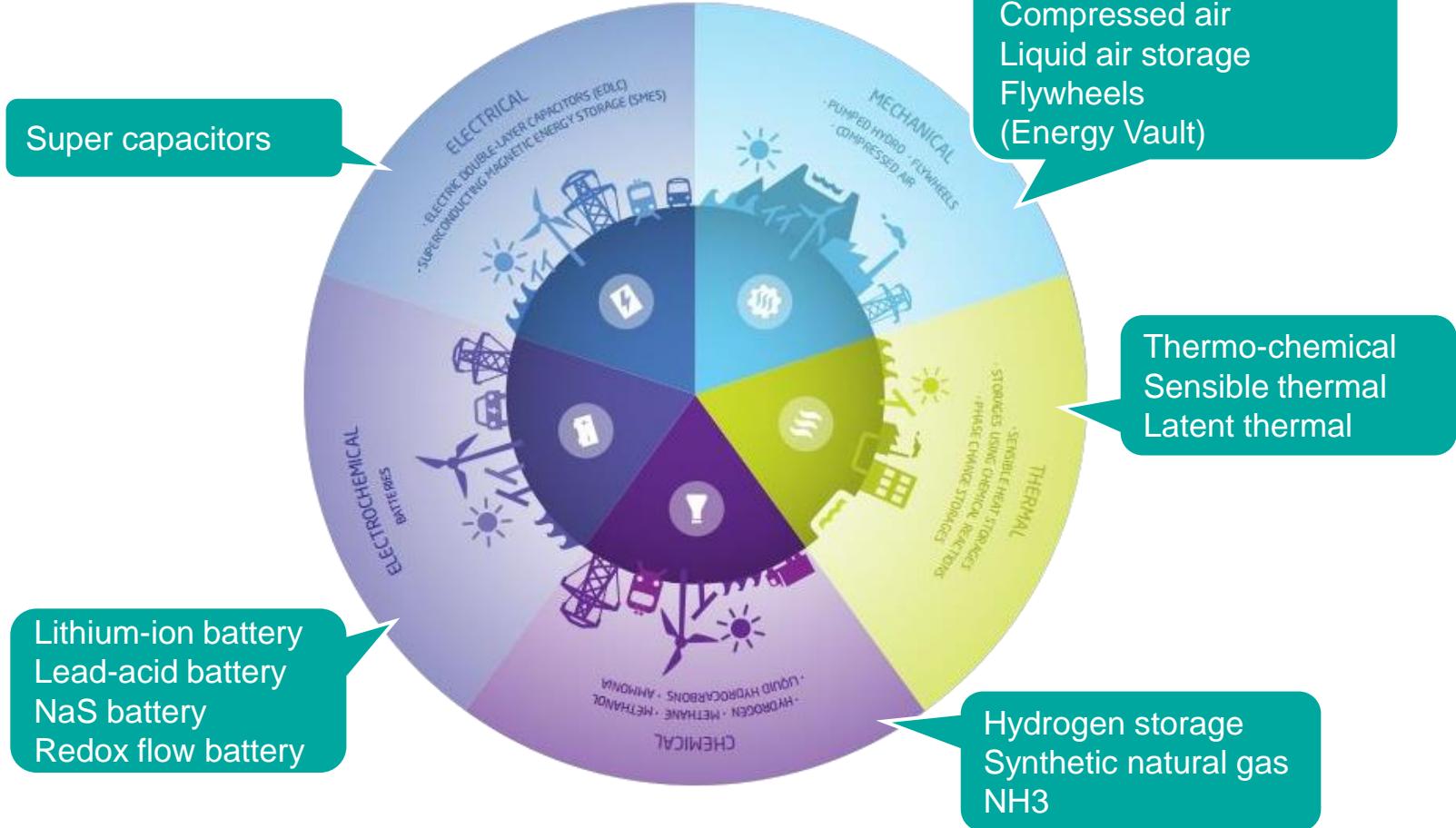


A farmhouse with full solar roof in Switzerland
(source: Csem)

Energy supply, economics and transition


Supporting
technologies and
sustainability

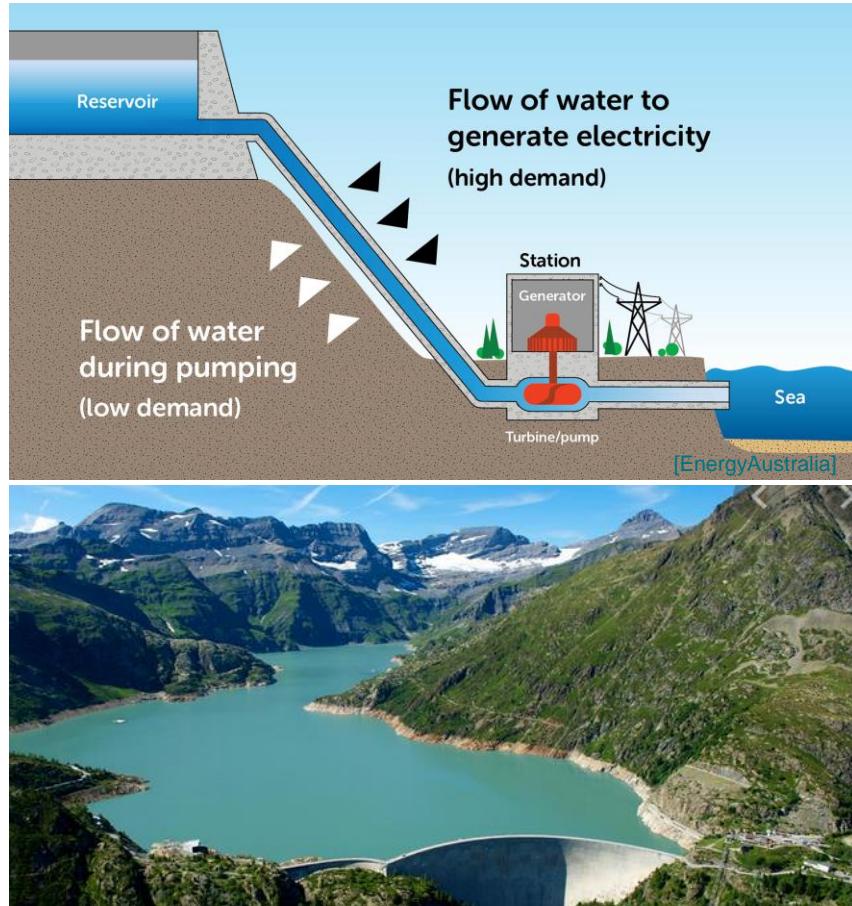
© Alain Herzog / EPFL

Electricity storage

Electricity storage - technologies

Principle

Potential energy stored in reservoir above a turbine. Around 160 GW capacity in 2020 *, a few 100 GW planned.... ****


Pricing (estimates) **

- 1000-2600 \$/kW
- 100-300 \$/kWh capacity (depends on reservoir size), 70-85% efficiency
- Ultra-long lifetime

Hydro: a key asset in Switzerland (15.5 GW end 2018, > 300 kW). Now 3.9 GW pumped hydro, with >0.9 GW additional soon

■ Most new PHS will face battery competition !

New pumped-storage capacity in China is helping to integrate growing wind and solar power - U.S. Energy Information Administration (EIA)

Pumped storage hydropower

Batteries and electrochemical storage: the next big thing

Stimulated by the automotive market, strong growth of the battery market

1. Vehicles, possibly become prosumers
2. At home with «prosumers»
3. Providing services, reserves or «virtual inertia» on the grid**
4. Large systems coupled to large PV or wind parks

Same learning curve as Wind and PV thanks to mass/volume effect

Potential for low cost storage (but not seasonal) In general underestimated

* Cf for an introduction: [Inertia and the Power Grid: A Guide Without the Spin](#)

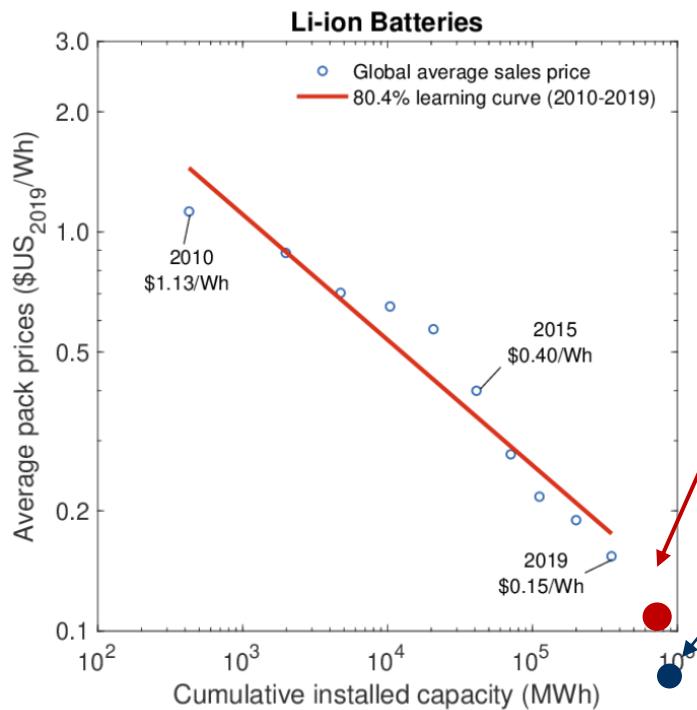
Several tens of new companies/products are developing storage solutions, mostly based on batteries

Home storage

... MW

... MW

Possible Vehicle to Grid


Small storage systems (typ 10 kWh) for home application.
In Germany over 50% home solar with storage !

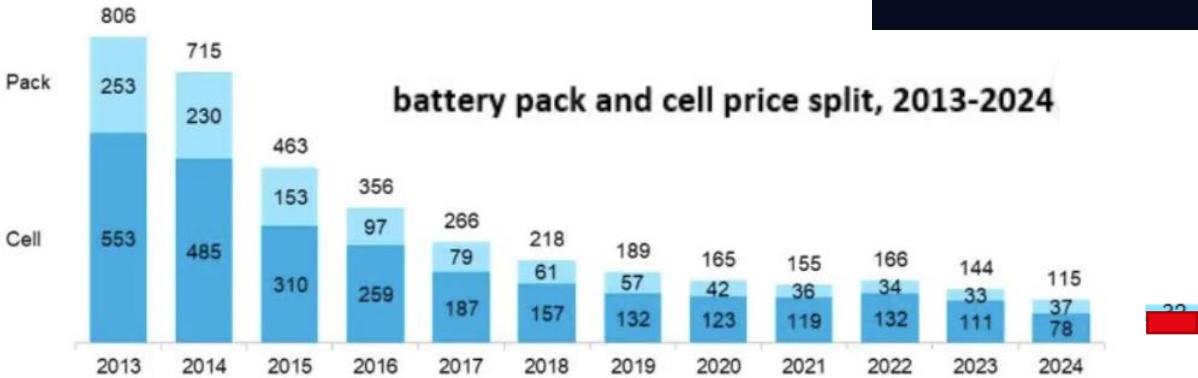
Currently more and more large wind and solar parks installed with 1 to 2 hours storage

Small volumes,
Still expensive (but no reason why it should stay so), needs standards

STORAGE STIMULATED BY THE AUTOMOTIVE MARKET

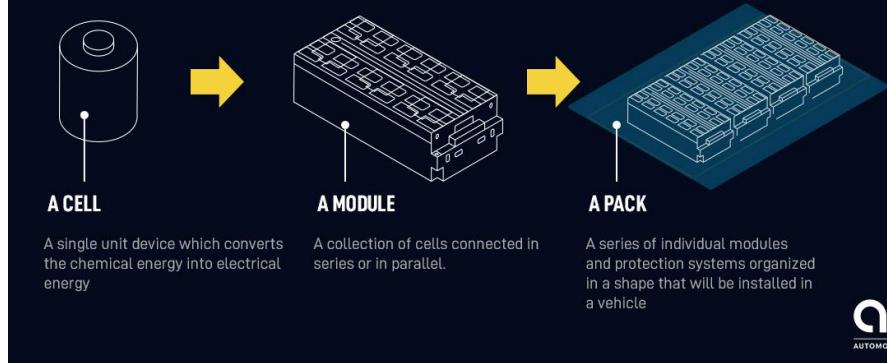
Automotive Battery learning curve

Today automotive battery pack at 100-120 \$ /kWh
battery cells **at 50-60 \$/kWh**


We expect the price of an average battery pack to \$62/kWh by 2030

Ultra-fast learning curve, as for PV

Usable for stationary storage


Battery

Real 2024 \$/kWh

Source: BloombergNEF. Note: Historical prices have been updated to reflect real 2024 dollars. Weighted average survey value includes 343 data points from passenger cars, buses, commercial vehicles and stationary storage.

BATTERY CELL, MODULE OR PACK. WHAT'S THE DIFFERENCE?

ACC
AUTOMOTIVE CELLS Co

Best 2025

AS RENEWABLES, BATTERIES MADE IMPRESSIVE COST REDUCTION

LFP Battery cell at 47 \$/kWh

NMC at 60\$/kWh

With 4000-5000 cycles battery cell cost at 1 \$cts/kWh stored !

No material limits. A complete revolution

INTERCALATION

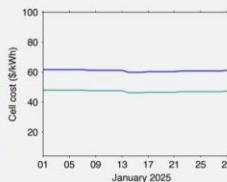
Battery Component Price Report
January 2025

Battery Component Price Report January 2025

Contents

Top movers (1)
Cell costs (1)
Cathodes (2)
Lithium (2)
Anodes (3)
Electrolyte (3)
Precursors (4)
Other components (4)
Exchange rates (4)
About (5)

Top movers (month on month average)


Separator	-5.4%	Li2CO3 Industrial	+4.1%
EC Solvent	-2.6%	PVDF Binder	+4.1%
LFP Cell	-1.4%	NMC811 PCAM	+4.0%

Cell costs

Table 1. Monthly average prismatic EV cell cost summary

Battery	Price (\$/kWh)	M/M %	Legend
LFP cell	47.2	-1.4	
NMC cell	60.9	-0.8	

Figure 1. Prismatic EV cell cost time series

RIDICULOUSLY LOW PRICE FOR BATTERY SYSTEMS ANNOUNCED

- Note of caution: likely low margin at 66 \$/kWh (cf cell price at 47\$/kWh, only 19 for BMS, packaging, container containers)... but the trend is here...

“This procurement covers a comprehensive range of services beyond the delivery of storage equipment, including system design, installation guidance, commissioning, 20-year maintenance, and integrated safety features”

pv magazine energy storage

News & Analysis About Us Advertise

Markets Projects & Applications Industry Technologies Products & Services

Tenders Policy Supply chain

TENDERS

PowerChina receives bids for 16 GWh BESS tender with average price of \$66.3/kWh

The tender marks the largest energy storage procurement in China's history.

By Vincent Shaw | Dec 09, 2024

Markets Tenders

1

The Edwards & Sanborn solar-plus-storage project in California is now fully online, with 875MWdc of solar PV and 3,287MWh

Masdar, EWEC announce 5 GW/19 GWh solar-plus-storage project in Abu Dhabi

Masdar and Emirates Water and Electricity Co. (EWEC) plan to build a \$6 billion, 5 GW/19 GWh solar-plus-storage project in Abu Dhabi, with operations set to start by 2027.

JANUARY 14, 2025 **BLATHNAID O'DEA**

Cost of Storage

- if 100 \$/kWh investment at system level for storage s over 5000 cycles (1 cycle per day)
→ 2 cts/kWh storage costs (without capital costs and maintenance)
- Combined with Wind and PV:
generate, store and dispatch at will !

- Due to large increase in investement in China, huge capacity in place
- 4800 GWh by end 2025 of battery manufacturing (enough for e.g. 100 Millions cars battery).

→ Price war and lower battery costs

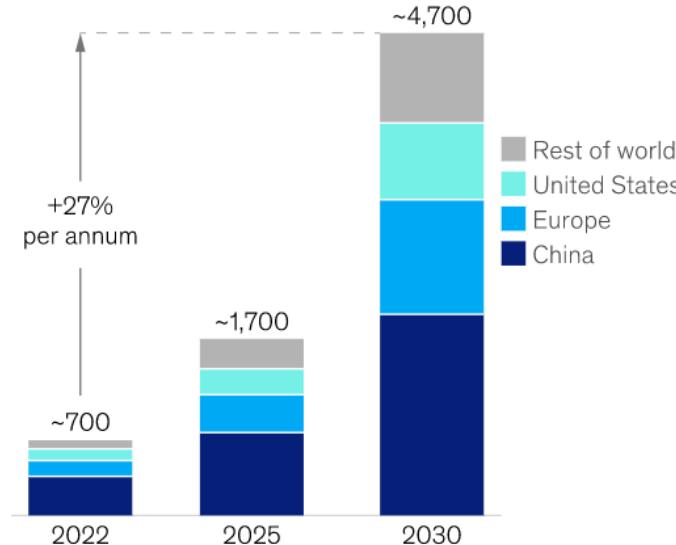
2025: Cells down at <50 \$/kWh, packs at < 100\$/kWh,

DC storage system at < 100 \$/kWh. Still expensive in CH for small systems

Strong effort in Europe in many companies to catch up on manufacturing

Courtesy of CATL

CATL, BYD To Slash Battery Prices By 50% In 2024. BOOM! EVs Win!

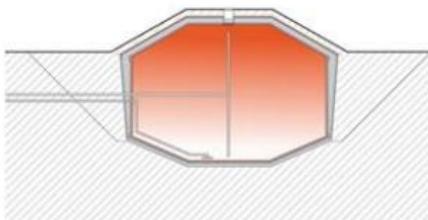

1 week ago · Steve Hanley · 65 Comments

Li-ion battery demand is expected to grow by about 33 percent annually to reach around 4,700 GWh by 2030.

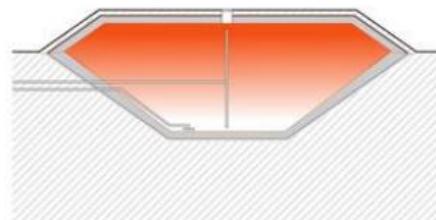
Global Li-ion battery cell demand, GWh, Base case

By region

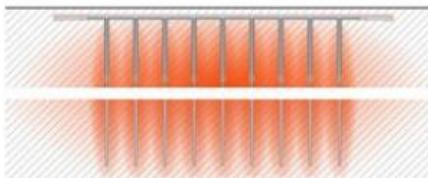
By sector


Indeed...
Production capacity
Reached in
2025 in large
part thanks to
china!

1Including passenger cars, commercial vehicles, two-to-three wheelers, off-highway vehicles, and aviation.
Source: McKinsey Battery Insights Demand Model


Lithium-ion battery demand forecast for 2030 | McKinsey

Main concepts for seasonal thermal energy storage.
Use heat (solar) or excess electricity in Summertime


Tank thermal energy storage (TTES)
(60 to 80 kWh/m³)

Pit thermal energy storage (PTES)
(30 to 80 kWh/m³)

Borehole thermal energy storage
(BTES)
(15 to 30 kWh/m³)

Aquifer thermal energy storage
(ATES)
(30 to 40 kWh/m³)

Swiss solar tank

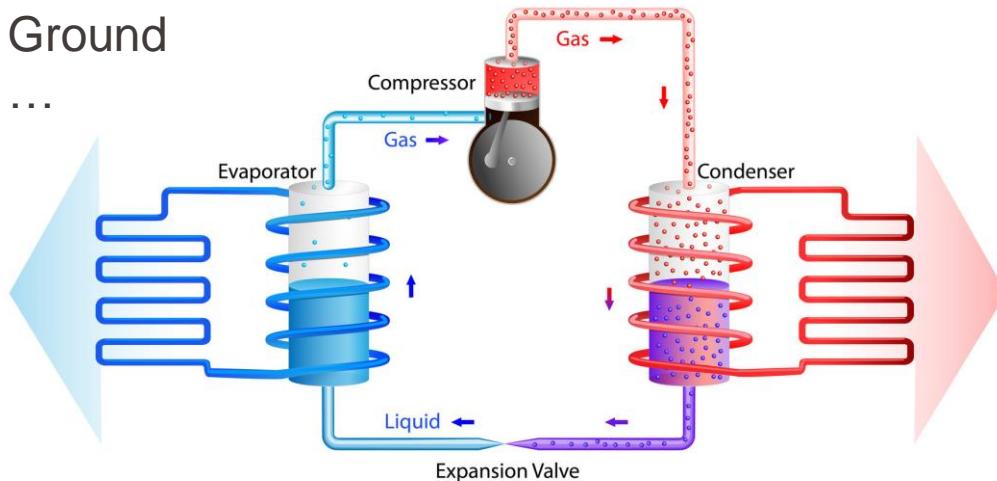
LowT Solar thermal heat

In the Danish city of Silkeborg, 44 000 inhabitants, the world's largest solar thermal plant will be installed until the end of the year. The 12 436 large collectors will be mounted on agricultural areas in front of the city's gate. Completed, the plant will have a total area of 156 694 m².

- Heat production and Storage with solar thermal
- Strong potential also with excess summer electricity !
- Heat up at 95°C for winter district heating
- Announced seasonal storage costs **of 4 cts/kWh** thermal !
- (but requires areas)

- Electrolysis of hydrogen will likely be the most meaningful route, thanks to ultra-low cost renewable and electrolyzers, and possibly competitive in the near and medium and long term → realistic target at less than 1\$/kg H₂ (3 cts/kWh chemical)
- Could be a long-term support to decarbonization with storage/winter usage (e.g. H₂ by pipeline to CH), or for industrial process
- Replacing natural gas by Hydrogen in some application could be the route to follow
- Longer term storage and all compression steps, pipeline adaptation, challenging, efficiency losses: challenging
- H₂ initiative at EU level, billions are flowing... Many projects announced and delayed

- **Market entrance for alternative route with Ammonia (green chemical). Later transport and use green Ammonia. Easier to transport (vs H₂) by boat.**
- Entrance for Methane (methane from captured CO₂ and H₂) not clear, unless a high price on CO₂ tons. Could be pushed by fossil fuel/chemical industry
- **Still better to go all electric whenever possible (as much as you need, but as little as necessary)**


Synthesis storage

- Electricity storage is a cornerstone of the future grid. Or a possibility to work without large grids !
- Worldwide battery storage capacity is quickly increasing due to dropping of the lithium-ion battery price and rising of the e-mobility. For short-term from seconds to hours or a few days batteries will help.
- For seasonal storage only Hydro, thermal energy storage, and possible PtG (power-to-gas), in salt cavern or oil/gas field are possibly cost effective (and of course Bio-mass, wastes).
- In many scenario, over-production and curtailment of production ! (e.g. wind and solar) or on purpose production (e.g. peak with biofuel) might be cheaper than additional long term storage... In CH not easy to store Hydrogen

Support to decarbonization: Heat pump -

Sources

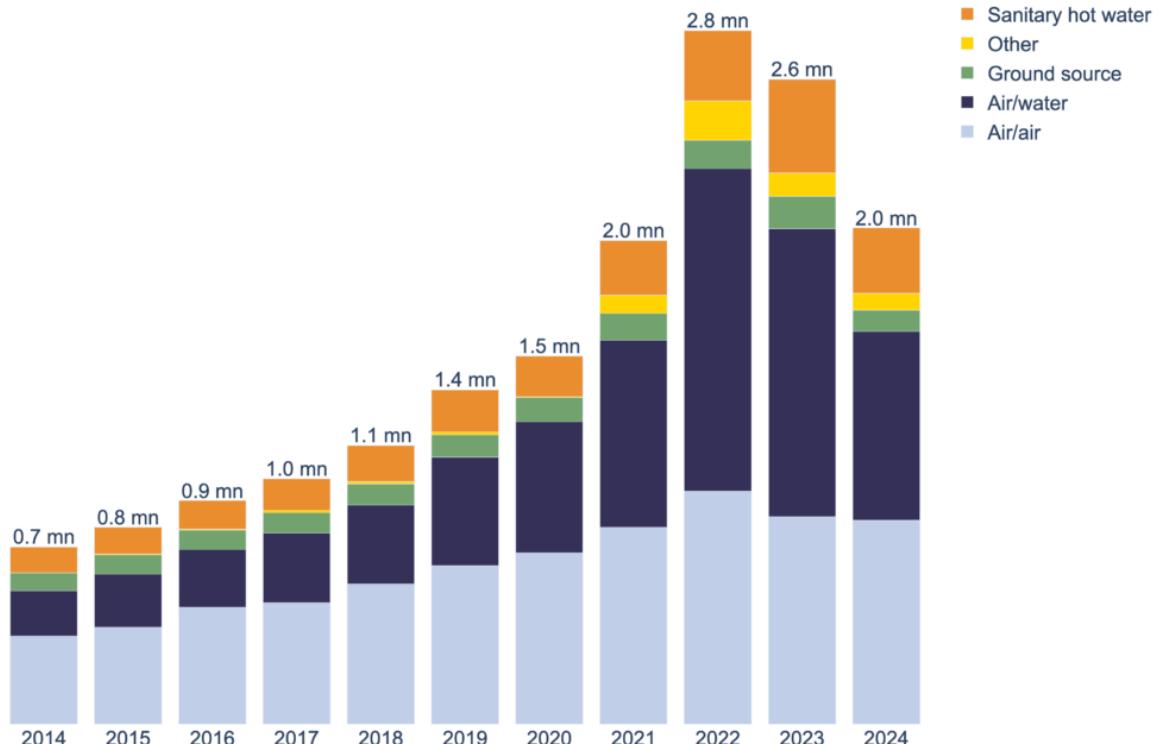
- Air
- Water
- Ground
- ...

<https://www.airteamltd.com/hvac-knowledge-check-heat-pumps-101/>

Coefficient of performance (COP= heat/electricity) up to 3 to 5 or more (depending on final and temperature difference)

The heat pump absorbs heat from the cold source and releases it to the warmer one.

Components


- Evaporator
- Compressor
- Condenser
- Expansion Valve

Can be used with district heating
With CO₂ network

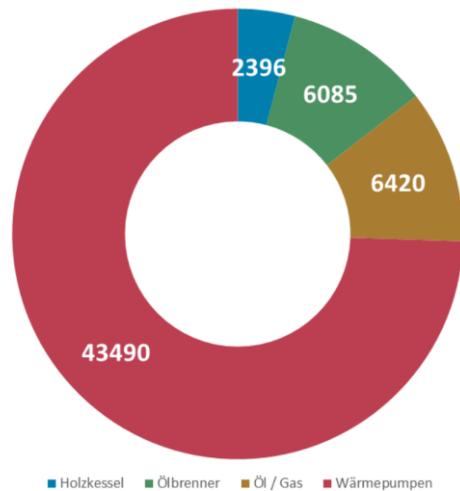
Heat pumps will become an essential Elements of the energy transition. Range from kW to MW

Heat pump installation in Europe

Annual sales of heat pumps in 13 European countries

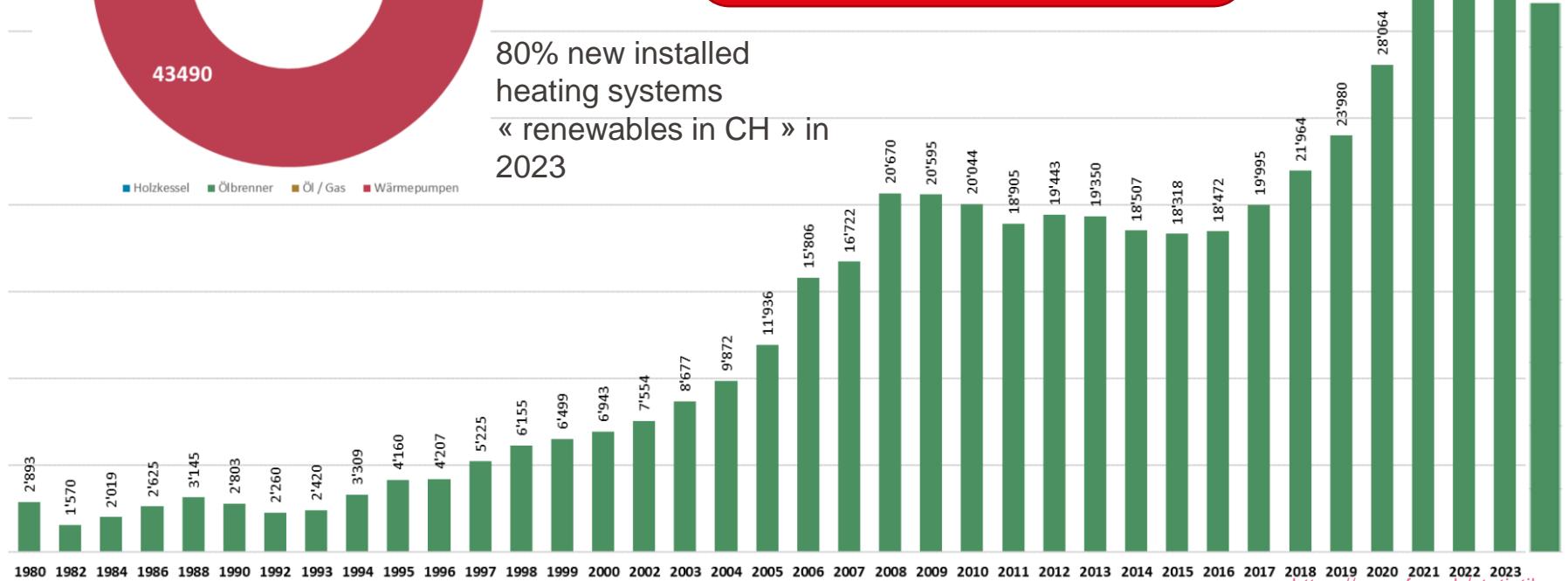
Source: European Heat Pump Association
Countries: FI, NL, DE, UK, FR, PL, AT, BE, DK, IT, NO, PT, SE

Market data -
European Heat Pump
Association (ehpa.org)


Some support scheme stopped
in 2023...

Higher interest rate

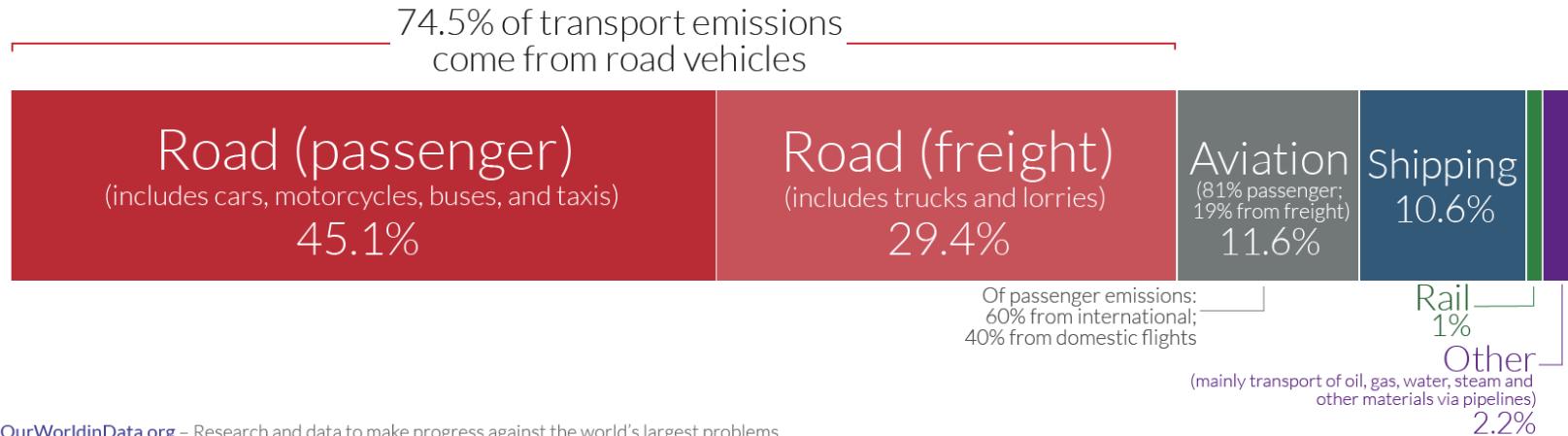
Need to reach 60 millions heat
pumps by 2030 to reach
«repowerEU» with 50%
renewable heat


JRC Publications Repository - Clean Energy
Technology Observatory: Heat pumps in the
European Union - 2023 Status Report on
Technology Development, Trends, Value Chains
and Markets (europa.eu)

Swiss heat pump statistics

80% new installed
heating systems
« renewables in CH » in
2023

More than 43'000 heat
pumps sold in 2023.
But slows down in 2024


Transport

CO₂ emission by transport mode

Global CO₂ emissions from transport

This is based on global transport emissions in 2018, which totalled 8 billion tonnes CO₂. Transport accounts for 24% of CO₂ emissions from energy.

Our World
in Data

OurWorldInData.org – Research and data to make progress against the world's largest problems.

Data Source: Our World in Data based on International Energy Agency (IEA) and the International Council on Clean Transportation (ICCT).

Licensed under CC-BY by the author Hannah Ritchie.

Challenge for aviation and shipping ! → ideally biofuels, or NH₃ for boats (do not use biofuels in cars..)
Not much happening

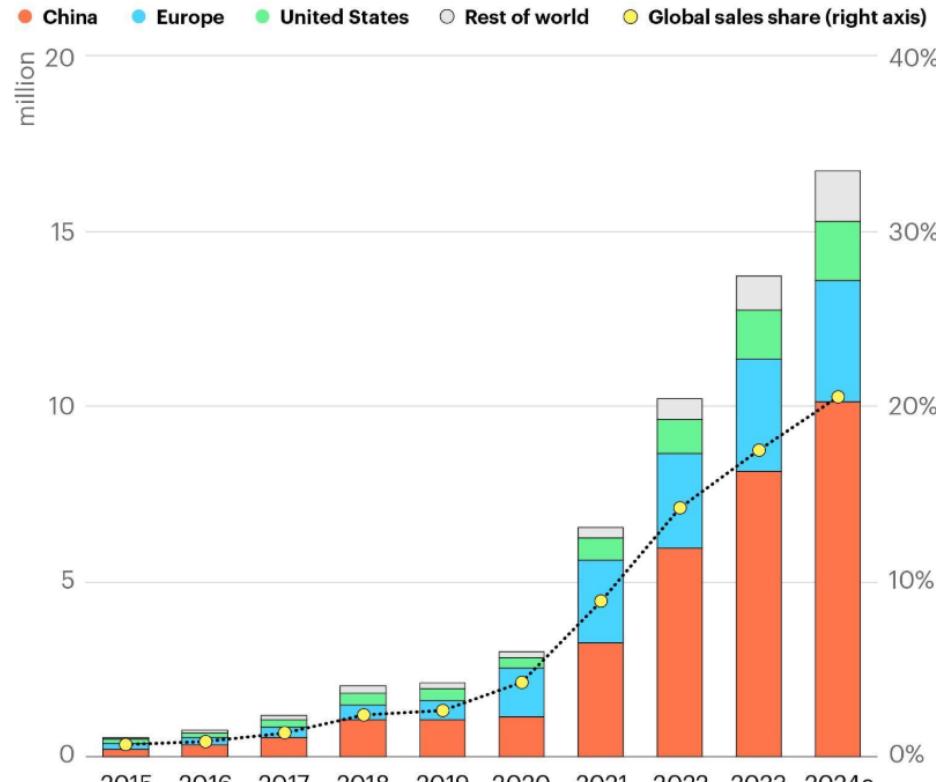
Emergence of the electric car

If Battery packs → 60\$/kWh (600 to 1000 cycles)

→ 40 kWh pack → 2400\$

→ 100 kWh pack → 6000\$

Car electricity usage: 10 – 20 kWh/100 km


- No more servicing (save ~500 \$/year)
- Can use cheap electricity (save 200-1000\$/year)
- Saves 700 to 1500\$/year and does not need to be more expensive than a regular car !

→ Electric car will/should replace fuel cars in many markets (ideally small cars...)

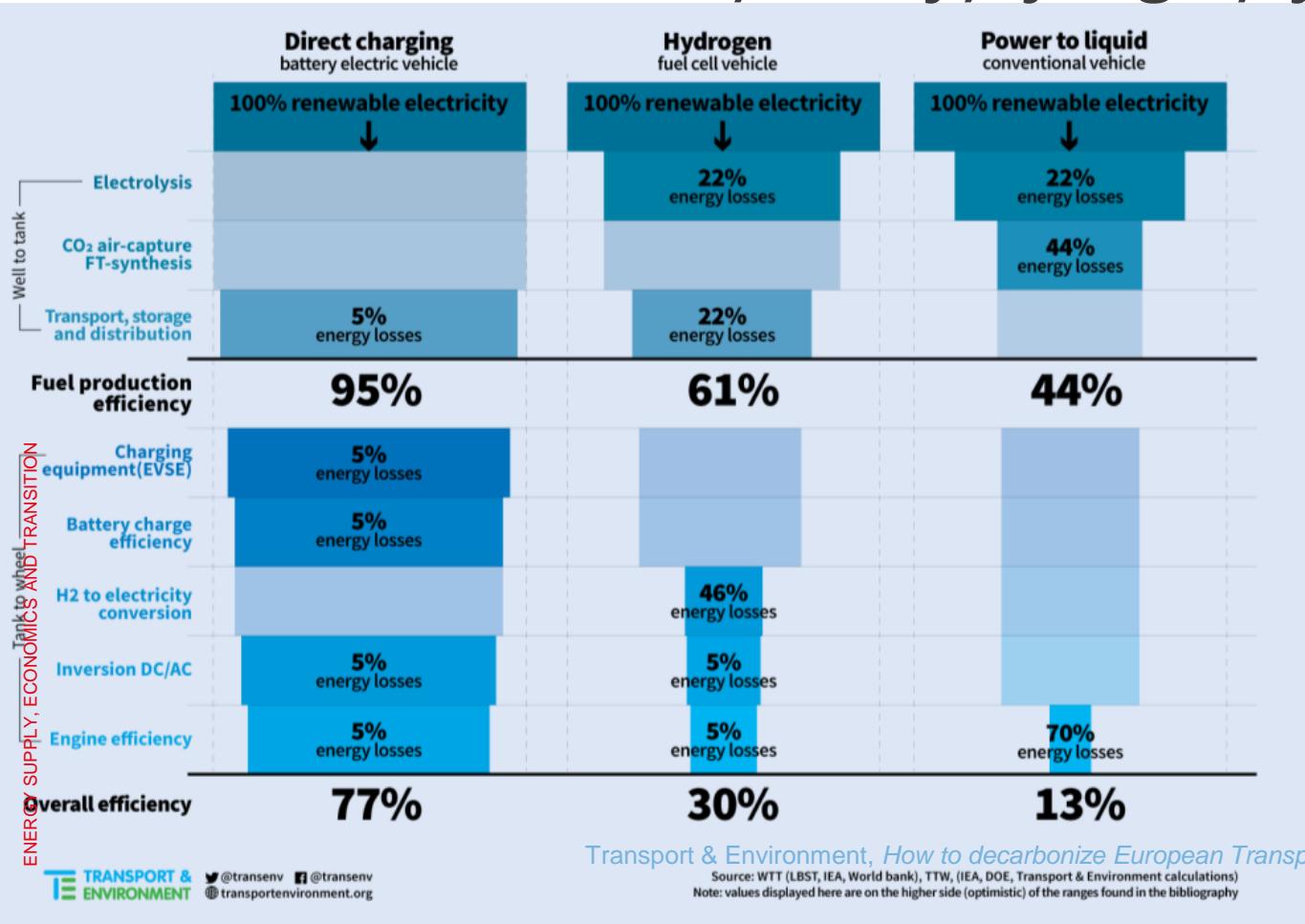
Rising company: BYD in China, with cars down to 10 kCH\$

Electricity storage - electric car

Electric car deployment has accelerated with news sales in the 20% range of the full parc for around 17 millions cars

International Energy Agency

The goal is globally less cars, but if a car, better it is electrical
n.b. around 100 millions new cars per year


With battery price down and china industrial effort

Many countries worldwide, with no car industry will adopt Chinese e-car.
USA and Europe will try and protect their market !

BYD Seagull at 9500 CHF, with 30 kWh batteries

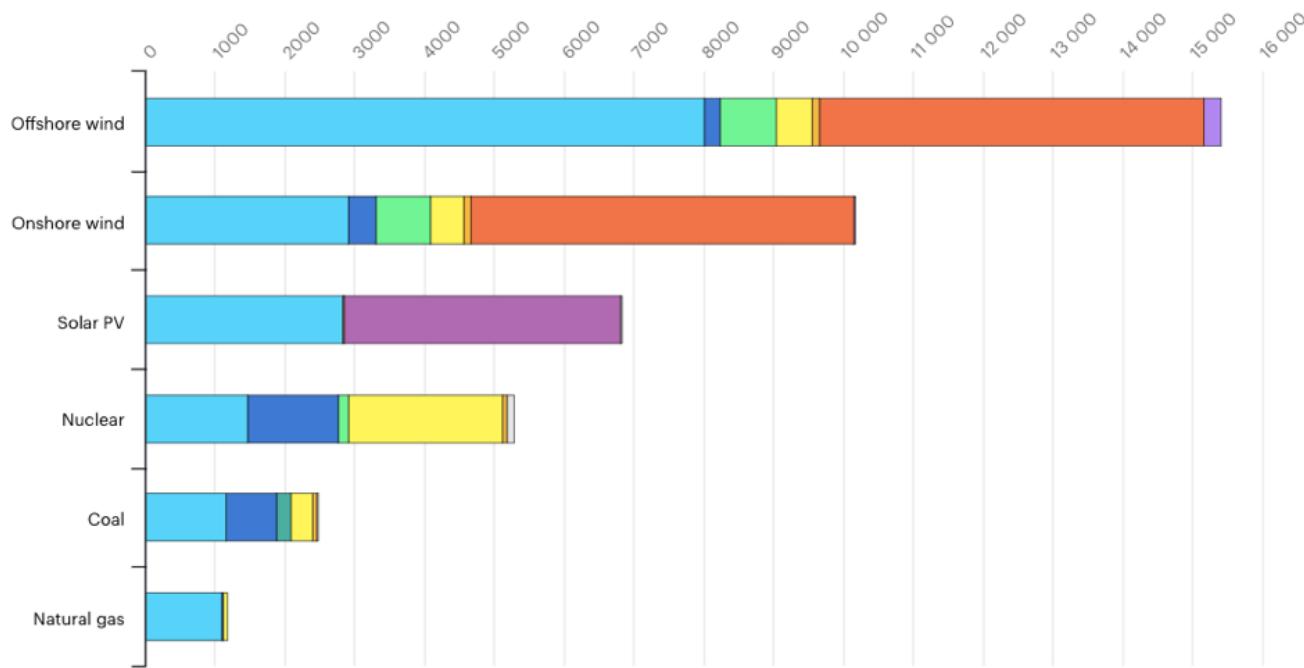
Net zero emission car , battery , hydrogen, syn - fuel

Is this sustainable ?

Material availability?
CO2 emission (and others)?
Biodiversity?

Materials availability

- **At the scale of the energy transition, the limitation in materials is a myth (as is the limitation in fossile fuel availability)**
- Some bottleneck and temporary price increase possible (e.g. on Cu, Ag, Co) quickly solved by market (increased production) or technology adaptations. (Ag, Co, other rare earth for magnets).
- Of course it should not prevent to limit in general material usage (less hardware consumption, less construction, less IT)... But for this, less people seems to



Fossil fuel lobbies would like you to think that materials and mining a major issue associated to renewables and batteries... And many intellectuals, pseudo engineers and economists....

MATERIALS EXTRACTION

● Copper ● Nickel ● Manganese ● Cobalt ● Chromium ● Molybdenum ● Zinc ● Rare earths ● Silicon ● Others

kg/MW

Yes you'll need a little more material extraction than with the **current status**

Outside fuel extraction not considered here

MATERIAL USAGE: EXEMPLE CUPPER

PV: 1 TW/year at 3 Cu Tons/MW → 3 MT /year

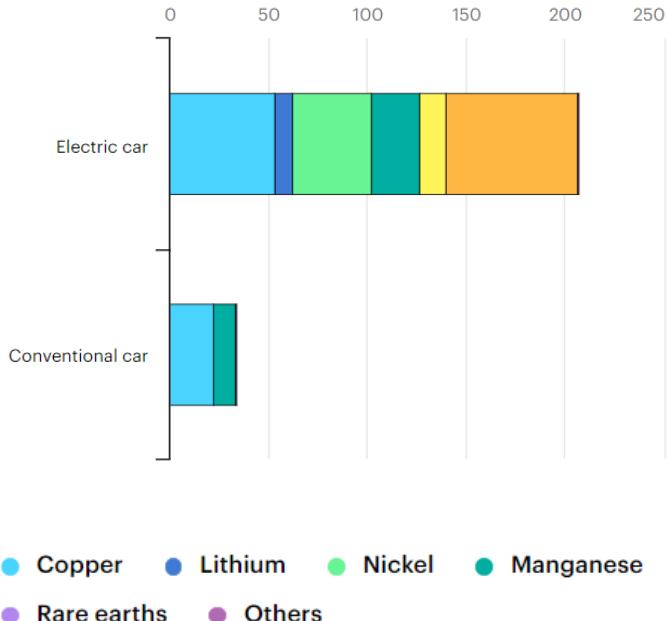
Windturbines: 500 GW/year at 2 Tons/MW, with AI grid connection) → 1 MT/year

Electric cars: 80 millions cars at 60 kg Cu, with charging station → 4.8 MT/year

~ 8-9 MT out of 25 MT /year processed today

→ market pressure and possible bottlenecks, but not fundamental, and...

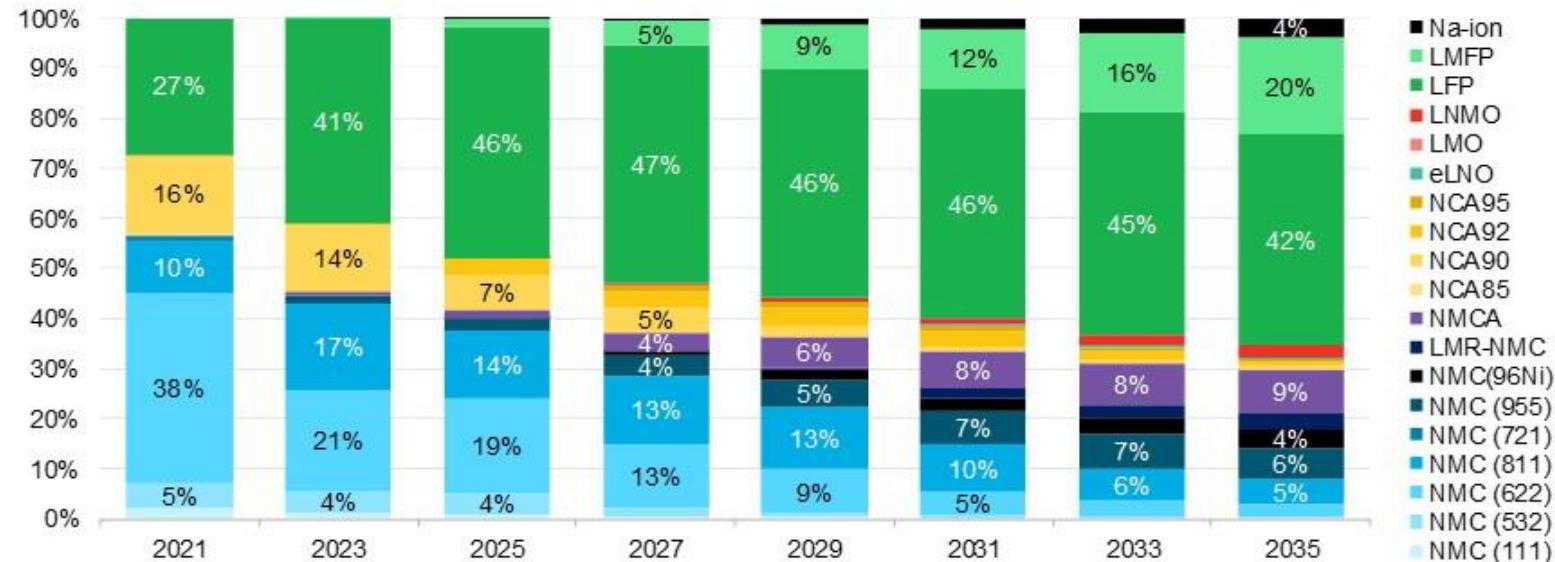
- Materials can be saved (improved designs), additional/improved mining and recycling.
- As for other less used materials alternative solutions always exist! e.g. rare earth for magnets of windturbines , Ag for photovoltaics, cobalt for batteries....
- **There is no succesfull product that every stopped being produced because of „not enough“**


Materials and electric cars

- Before electric cars, nobody seem interested where the materials for the car were coming from

MATERIAL USAGE FOR ELECTRICAL NICO LITHIUM BATTERIES

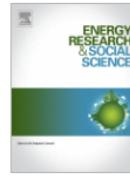
kg/vehicle


- Car makers can shift to Lithium Iron Phosphate batteries. Heavier but no Ni and Cobalt which are the most critical.
- New trend: add manganese
- Enough Li for > 2 billions cars, and possible shift to Na-Ion

- Battery cars of 70 kWh, CO₂ emission ~ 5 T
- Around 60-70 kg CO₂ emission /kWh.
- If using clean electricity in 30'000 km
→ carbon neutral!

Lithium-iron-phosphate (LFP) is taking over the battery market

Evolution of cathode chemistry mix across all passenger electric vehicle segments


Source: BloombergNEF. Note: Na-ion refers to sodium ion; LMFP is lithium manganese iron phosphate; LFP is lithium iron phosphate; LNMO is lithium nickel manganese oxide; LMO is lithium manganese oxide; LNO is lithium nickel oxide; NCA is nickel cobalt aluminum oxide; NMCA is nickel manganese cobalt aluminum oxide; LMR is lithium- and manganese-rich; NMC is nickel manganese cobalt oxide. See Appendix A for glossary of battery chemistries.

Materials: more strategic risks ?

Energy Research & Social Science

Volume 82, December 2021, 102311

Perspective

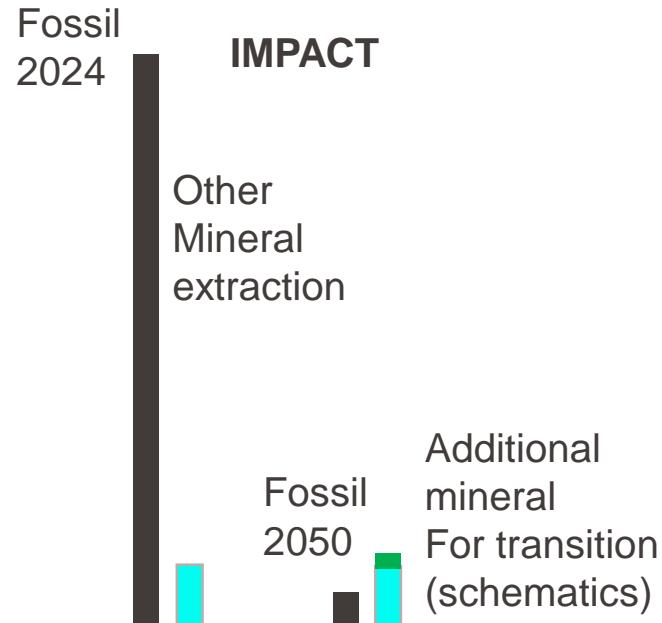
More transitions, less risk: How renewable energy reduces risks from mining, trade and political dependence

Jim Krane , Robert Idef

[More transitions, less risk: How renewable energy reduces risks from mining, trade and political dependence - ScienceDirect](#)

“an emerging perspective in the US public discourse makes the opposite case, arguing that a buildup of renewable electricity would exacerbate supply risks, mining intensity, and import dependence. This paper’s findings challenge such assertions.”

Commentary


Energy transition will require substantially less mining than the current fossil system

Joey Nijnens¹ , Paul Behrens², Oscar Kraan¹, Benjamin Sprecher³,
René Kleijn²

As for all mining possible local problems, and good practices required!! Use transition to make mining sector better ...

Fossil

- 5 trillions per year health costs
- 4-7 millions death
- Climate warming
- (and Putin)

Keeping a small fraction of our emissions for the energy transition

- for decarbonising the world economy
- 40 TW of PV panels at 300 g CO₂ /W emission par panel manufactured (Appendix) ?
- 15 GW of Wind at 200 g CO₂/W → 3 GT
- 2 billions batteries of 50 kWh at 60 kg CO₂/kWh → 6 GT
- Systems, grid update.... → 6 GT

Estimated total (with current good practice) → 27 GT To compare with the current ~ 50 GT billions tons CO₂ eq produced every year, and the remaining 1000 GT remaining for a +2°C scenario

Using around 3 % percent of our remaining carbon budget to make the object and infrastructure that will save on CO₂ emission is the «less worse» use case for CO₂
And again, the more you decarbonise, the better the CO₂ contents of all components

Biodiversity

Be-smart and beware !
Doesn't need to be in opposition

RE-BD AR2024.
Assessment Report on
Renewable Energy and
Biodiversity

ACCELERATING RENEWABLE ENERGY DEVELOPMENT WHILE ENHANCING BIODIVERSITY PROTECTION IN SWITZERLAND

URGENT RECOMMENDATIONS BASED ON A REVIEW OF SCIENTIFIC LITERATURE

Batteries, solar, wind, electrolyzers

- For metals, mining, good practice required (as for any other product)
- Same for industrial production (as for any other product)
- Renewables: **chance to put more pressure on mining industry**
- Recycling possible and necessary (Batteries, PV, ...) = materials will be here for ever
- To make products cheap, you need to save on resources and energy !!! This forces the material and energy learning curve !

- Green transition has a minimum impact
- In all cases, a minor problem compared to global warming
- Think of reducing non-essential things and try globally to «reduce» the mining sector, don't put the blame on renewables

Or

Conclusions first part

- With >50 Gt CO₂, including 38 Gt direct CO₂ annually, we are dramatically changing the world, 19 years left for 2° scenario...
- Primary energy usage (in the substitution method) will still grow, because of countries developing their economy. **All oil/gas producers want to exploit as much as they can their reserves.** If no decarbonized sources of energy, **fossile fuel will further increase because there is no energy crisis and plenty of fossil...**
- **ONLY realistic scenarios to decarbonize the world are based** on a strong increase of electrification, and massive deployment of wind and solar (and partly biomass). Improved electricity management, with strong flexibility (forecast, storage, on-demand usage or reduction) and reserve capacity are essential.
- All other energy and electricity sources will help (geothermal, nuclear fission, solar heat)
- Increased efficiency (in particular in buildings), tracking losses are a must to speed up
- **Sufficiency and less absurd consumption** will help make transition more quickly
- **Green economy works**, but requires massive efforts of industrialization, with mostly China bringing manufacturing to the scale required. If you do not push renewable (or nuclear) it will be made by fossile....

- Agriculture needs to reduce emission, lands and forest can contribute through CO₂ capture
- Instead of pushing consumptions of «futile» products (including Bitcoin, huge cars, 6G, AI ?), green deals should animate economy with clear goals and targets
- A few individual, companies, countries have to loose from the energy transition and will fight against it, by ignoring reality, by denying facts, truth or by being cynical (from a car mechanic, to a local oil reseller, to oil traders, to coal company, to fossil fuel exporting countries, to president of countries authorizing new oil fields).
- Most people, societies, and the planet ecosystem have to gain from transition
- Some countries are going actively for net zero emission, including CH... (to a large extent) current (unsufficient) pledges and actions, as well as plans for fossil fuel extraction plans will not help.... What will likely happen is a mixed scenario with partial decarbonisation, a 2.5-3° temperature increase dramatic overshoots, followed by stronger actions....
- If you **make clean-tech ultra-low cost**, you have a chance to subvert even the “energy-climate idiots”, and possibly even to restore to 2° and 1.5° when you start recapture....

What should happen ?

What will happen?

How can you contribute?

What about the topics below ?

Innovation
ZEROe

Towards the world's first zero-emission commercial aircraft

H2 airplanes ? Biofuel ?

Methanol ? NH3 ?

Thanks for your attention

Next steps

- Energy economics and policy (how do you favor the transition ?)
- How do you get people to change.....`?

Appendix (n.b. not for the exam)

Electricity storage – Energy vault

Principle

Store gravitational energy with 35t composite bricks

- 20 to 80 MWh storage
- 4 to 8 MW continuous power

Raised >> 100 millions from Softbank, and stock market

Try and make the cost calculation with concrete blocks ! It is doubtful that this kind of technology will fly

Material usage : critical ?

Exemple of Copper:

Photovoltaics (at 1000 GW/year with 3 tons of Cu per MW).

→ **3 millions Tons** per year

Windturbines (at 500 GW per year with 2 Tons/MW)

→ **1 million Tons**

Electric cars (80 **millions** cars at 60 kg Cu, including charging station)

→ **4.8 millions Tons**

~ **8-9 millions** tons on components → market pressure

Out of ~ 25 millions tons/year ... Currently increase in mining at 2.5% year

What can/will happen

- pressure for additional/improved mining and recycling will grow.... Energy transition is part of the pressure. Al and other metals can substitute in many cases (Cu used a lot for roofs in CH...)
- Industry has already reacted, Cu will be «hot» but will happen, lithium likely easier...
- For less used materials (e.g. rare earth for wind turbines, Co for batteries), mitigation solutions always exist !

- Enough lithium for > 2 billion cars (taking a 120 g lithium by kWh of battery). 17 MT reserve and 80 MT ressources.

(with 70 kWh x 0.12x 1 billions= 8.4 millions tonnes)

- Alternative chemistry will appear if huge market !

Mineral Commodity
Summaries 2019"
(PDF). U.S. Geological
Survey. 2019.

As for all mining possible local
problems, and good practice required !!

Adapted per kg of batteries from : Kim et al. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis Environ. Sci. Technol. 2016, 50, 14, 7715-7722

Lithium-Ion Vehicle Battery Production – status 2019 on Energy Use, CO₂ Emissions, Use of Metals, Products Environmental Footprint, and Recycling

CO2 emission of battery production

Realistic numbers today at ~60 kg CO2/kWh

- Énorme éventail selon la source : GHG 40 .. 250 kgCO₂eq/kWh !

« Étude suédoise »:

Mia Romare, Lisbeth Dahlöf (2017); *The Life Cycle Energy Consumption and Greenhouse Gas Emissions from Lithium-Ion Batteries*; IVL Swedish Environmental Research Institute

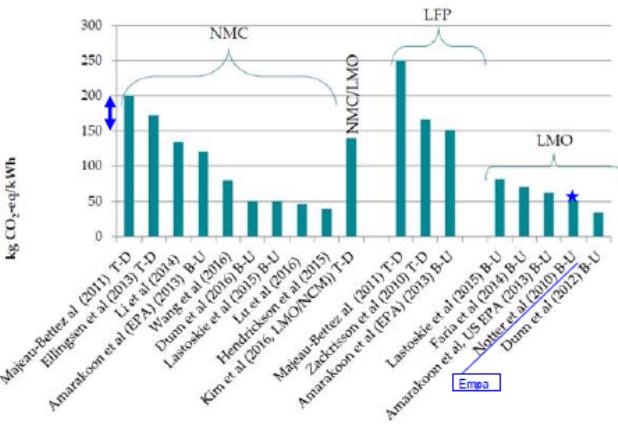


Figure 3: Calculated greenhouse gas emissions for different LCA studies of lithium-ion batteries for light vehicles for the chemistries NMC, NMC/LMO, LFP and LMO. T-D=Top-down approach for manufacturing and B-U is Bottom-Up approach.

- How large are the energy use and greenhouse emissions related to the production of lithium-ion batteries?

The results from different assessments vary due to a number of factors including battery design, inventory data, modelling and manufacturing. Based on our review greenhouse gas emissions of 150–200 kg CO₂/kWh battery looks to correspond to the greenhouse gas burden of current battery production. Energy use for battery manufacturing with current technology is about 350–650 MJ/kWh battery.

- Seulement 8 études sur 113 reposent sur la saisie et l'évaluation de données propres (Peters et al. 2019)¹⁾

- De nombreux auteurs reprennent les propos d'autres auteurs et se citent réciproquement. Les données les plus citées sont les données norvégiennes²⁾ de 150 à 200 kg CO₂eq/kWh
-> Les valeurs élevées souvent citées semblent « vraies »

Actualisations :

- Travail complet de Chine/USA (GREET, Yin et al. 2019)³⁾: 43 - 58 kgCO₂eq/kWh (prod. USA), 80 -110 kgCO₂eq/kWh (prod. Chine)
- Travail complet des USA (Dai et al. 2019)⁴⁾: 72.9 kgCO₂eq/kWh
- Fin 2019, les auteurs de « l'étude suédoise » ont sensiblement corrigé les anciennes valeurs à la baisse qui sont maintenant de 61 - 106 kgCO₂eq/kWh⁵⁾
- Suisse : Ecoinvent v3.6 (2019): 7.88 kgCO₂eq/kg 69 kgCO₂eq/kWh CH
Les révisions en cours (Empa, PSI) affichent pour le niveau actuel de la technique (part d'électricité d'origine fossile rel. élevée) à des valeurs⁶⁾ d'env. 70 kgCO₂eq/kWh.

¹⁾ The environmental impact of Li-Ion batteries and the role of key parameters – A review; Peters, Baumann, Zimmermann, Braun, Weil; HIU Helmholtz-Institute, KIT Karlsruhe Institute for Technology; Renewable and Sustainable Energy Reviews 67 (2017) 491–506; <http://dx.doi.org/10.1016/j.rser.2016.08.039>

²⁾ Linda Ager-Wick Ellingsen, Christine Roxanne Hung, Anders Hammer Strømman 2017; Identifying key assumptions and differences in life cycle assessment studies of lithium-ion traction batteries with focus on greenhouse gas emissions; Transportation Research Part D 55 (2017) 82–90 <http://dx.doi.org/10.1016/j.trd.2017.06.028>

³⁾ Life cycle inventories of the commonly used materials for lithium-ion batteries in China; Renshu Yin, Shuhuan Hu, Yang Yang Journal of Cleaner Production 227 (2019) 960–971 <https://doi.org/10.1016/j.jclepro.2019.04.188>

⁴⁾ Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications; Qiang Dai, Jarod C. Kelly, Linda Gaines and Michael Wang; Systems Assessment Group, Energy Systems Division, Argonne National Laboratory; Batteries 2019, 5, 48; doi:10.3390/batteries5020048

⁵⁾ Erik Emilsson, Lisbeth Dahlöf (2019); Lithium-Ion Vehicle Battery Production Status 2019 on Energy Use, CO₂ Emissions, Use of Metals, Products Environmental Footprint, and Recycling; IVL Swedish Environmental Research Institute; <https://www.ivl.se/download/18.14d7b12e16e3c5c36271070/1574923989017/C444.pdf>

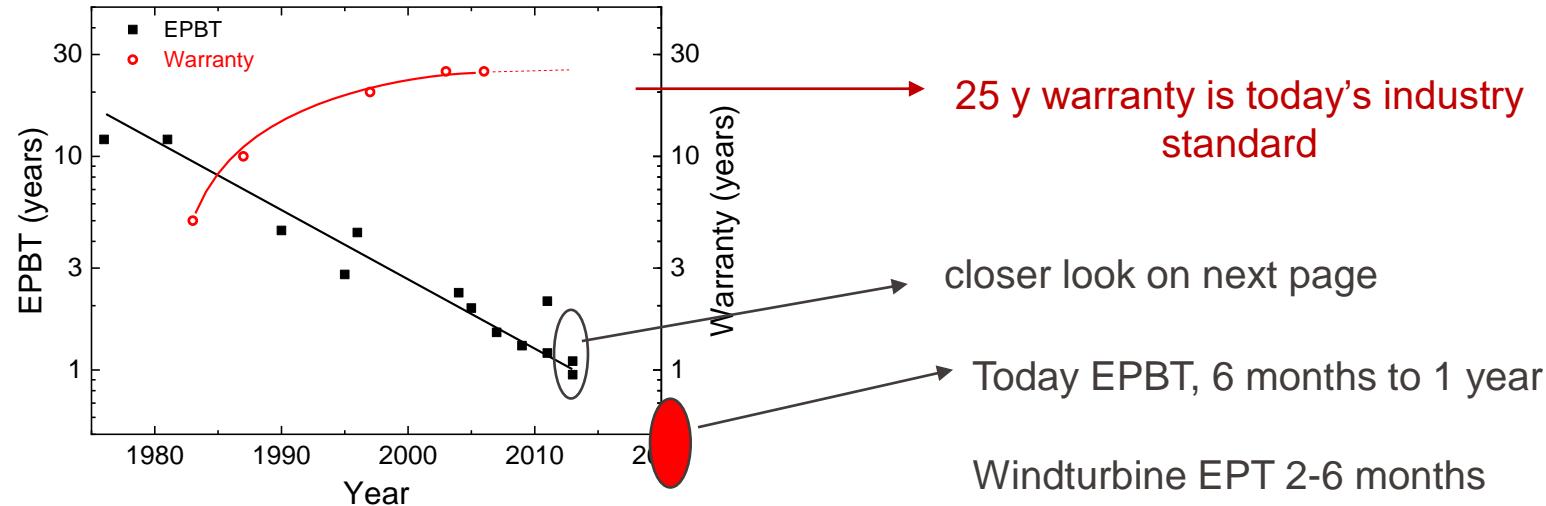
Current good practice CO₂ emission for battery !

~ 65 kg/kWh (with optimised assembly lines).

→ 4.5 Tonnes CO₂ additional for the car. **Compensated after 30'000 km (at 130 gCO₂/km) if using clean electricity**

→ 6-8 x better than a fuel car going 280'000 km

- When you decarbonise the grid and the mining , 65 kWh/kg → down to 0 (will happen with decarbonation of the grid)
- Will improve quickly with progress in manufacturing
- You can recycle even Li-Ion battery or give them a second life (stationnary storage)

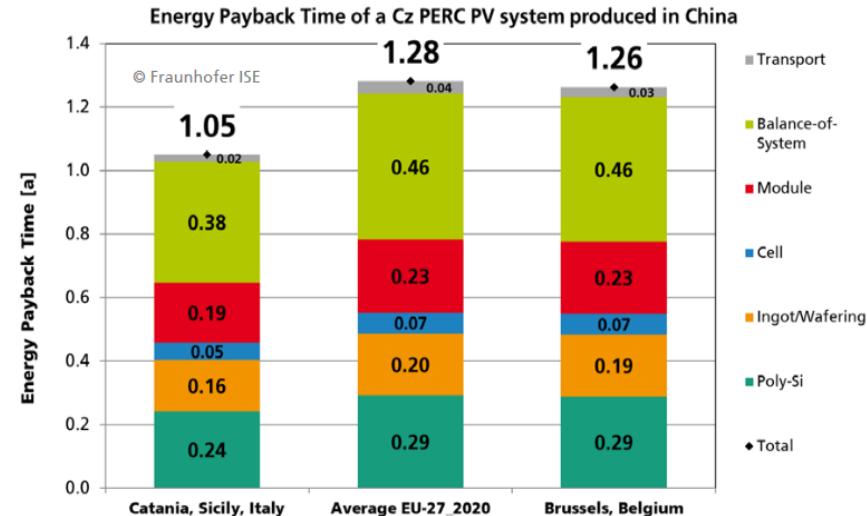
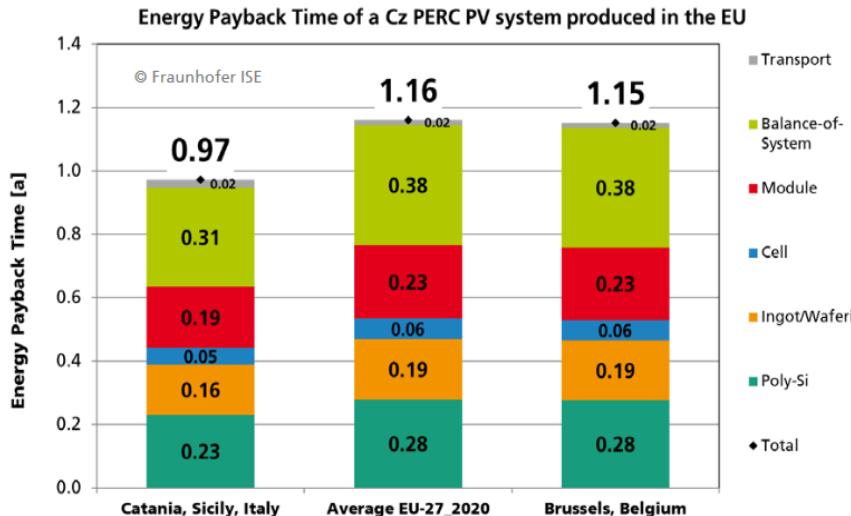

Adapted per kg of batteries from : [Kim et al. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis Environ. Sci. Technol. 2016, 50, 14, 7715-7722](#)

[Lithium-Ion Vehicle Battery Production – status 2019 on Energy Use, CO₂ Emissions, Use of Metals, Products Environmental Footprint, and Recycling](#)

Energy pay-back time: permanently improved

Exemple with Energy pay-back time (EPBT) of PV systems

Continuous decrease driven by leaner processing and increasing efficiencies

Long living myth: EPBT > module lifetime

- was true in 1985 for warranty, NOT lifetime
- lifetime usually much longer than warranty

Energy Pay-Back Time (EPBT) of Silicon PV Rooftop Systems

Source: Fraunhofer report 2021.... Improved since them

A typical PV system in Central EU will give back the energy required for **fabrication in 1 year**. Module around 60-65% of the total (n.b. Wind around 6 months EPBT)

Full module (from sand to product) : currently around **0.5-0.6 kWh/Wp** electricity required (5-6 cts/W at 10 cts/kWh local electricity).

Even if electricity prices increase by 5 cts/kWh impact on LCOE of solar electricity minimum (+2.7 cts CAPEX → 0.15 cts/kWh over 25 years at 3% cost of capital).

Module CO₂ footprint

If EU electricity mix: 350 g/W of modules

With Chinese electricity mix 700g/W

25 years of lifetime → 25 kWh

→ modern processes of module fabrication → 10-20gCO₂/ kWh of solar electricity produced

Full System level typical emission (including inverter, installation...): 20-40 g CO₂/kWh

In summary: even with mono c-Si modules, system energy payback time ~ 1 year and CO₂ emission is acceptable (20 – 40g CO₂/kWh)

[A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory – ScienceDirect 2021](#)

And the more you decarbonize your electricity system, the better it becomes

Reminder:

- Gas power plant 400g CO₂ /kWh
- Coal power plant 900g CO₂ /kWh

Q CELLS modules earn further low-carbon certification for French tenders

Hanwha Q CELLS GmbH, the German subsidiary of one of the largest solar cell and module manufacturers in the world, Hanwha Q CELLS Co., Ltd, has received on March 14 a Certisolis carbon footprint (CFP) certification of 300 kg eq/CO₂/kWc in France for its high-efficiency Q.PEAK DUO module series.

APRIL 1 2019 [Q CELLS](#)

However, these projects must be built using components that are certified as low-carbon during their production. The official certification from CRE module series has a carbon footprint of 300 kg-eq/CO₂/kWc, attained through a 25% recycled poly Si methodology. Sustained and sustainable solar growth thanks to France continues to enjoy encouraging growth as the country aims to reach its government-mandated solar capacity target of between 18.2 GW and 20.2 GW by 2030. Currently, cumulative solar capacity in France stands at just above 8 GW (as of the end of 2018), according to official Environment Ministry of France data.